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SUMMARY

This study examines the vulnerability of one channel of the HOST
detector amplifier to internal electromagnetic pulse (IEMP) induced
transients coupling into the circuit at certain selected locations. Only
the effects of the induced transients on the circuit, including transient-
radiation effects on electronics (TREE) effects, are studied, not the IEMP
coupling modes. The entry points for the transients are assumed to be
cables interconnecting the various subcircuits composing the amplifier.
The circuit operation was simulated using the NET-2 network analysis com-
puter program. In the simulation, models were used which incorporated
both linear and nonlinear operating characteristics. The induced tran-
sients were simulated using current pulses 1 usecZ, HDL experimental
component failure data for 1l-usec pulses were used for circuit component
failure criteria.

The results of the analyses indicate that for the external field
pickup points considered the amplifier circuit is most vulnerable to a
pulse induced on the cable leading from the bias control switch to the
input of the integrated circuit differential input driver composing part
of the bias power supply circuitry (see Fig. 3). The critical induced
pulse level found for the circuit was 61 V, 0.064 A for a positive-biased
pulse, and -73 V, 0.39 A for a negative-biased pulse. With the inclusion
of gamma radiation effects, the critical current level required for cir-
cuit failure is less certain, but may be up to a factor of 2 larger. The
next most vulnerable subcircuit was the preamplifier. Three pulse entry
points affecting the preamplifier were found to have approximately equal
vulnerability, with damage occurring for 3-A pulses.




1 INTRODUCTION

The Ballistic Missile Defense Advance Technology Center (BMDATC)
and the Army Material and Mechanics Research Center (AMMRC) are conduc-
ting a variety of programs designed to insure the operability .of missile-
borne electro-optical systems in a nuclear environment. As part of the
overall effort, the Harry Diamond Laboratories (HDL) is performing an
analytical and experimental study of the system-generated electromagnetic
pulse (SGEMP) on major components of the HOST long-wave infrared (LWIR)
sensor system. General Research Corporation (GRC) supplied supportl to
HDL on SGEMP and other problem areas.

A system located in a nuclear environment is exposed principally to
gamma rays (prompt and delayed), electrons (prompt and delayed), x-rays,
neutrons, and an electromagnetic pulse (EMP). The ionizing radiation can
penetrate a system and produce transient-radiation effects in electronic
(TREE) components. The EMP has a large magnitude and can affect a very
large geographical area. Photoelectric and Compton effects within materi-
als of a system produce free electrons which in turn produce electromag-
netic fields giving rise to IEMP.

The IEMP environment within a HOST-like telescope assembly has been
calculated previously.l It was found that the IEMP-generated fields
could be of sufficient magnitude to damage circuit components. The
damage was judged to occur as a result of IEMP-induced electrical pulses
on cables interconnecting various subcircuits. IEMP interaction with
individual component leads and within component cases, in additioh to
being extremely complex and difficult to predict, was estimated to be
of secondary importance compared to cable pickup. Based on these earlier
findings, this study attempts a detailed examination of the vulnerability
of the HOST circuitry to electrical pulses induced by an IEMP environment.

The objective of this study is to determine analytically the injec-
ted pulse magnitude, such as might be induced by an IEMP environment,
which will cause permanent component damage in the HOST sensor amplifier
circuit. TIEMP coupling into the circuit is modeled by injecting pulses
at several selected circuit locations. Computed-aided modeling techniques
are employed to simulate operation of subcircuits composing the amplifier
and to monitor voltage and current signatures at susceptible active device
terminals of each subcircuit during pulse injection. A critical pulse
magnitude is determined for each injection point, which is the threshold
signal level at the terminals of a particular device for failure. HDL
experimental failure data for each device were used for circuit failure
criteria.

lJ. L. Gilbert et al., Advanced Electro-Optical System Hardening, EMP/IEMP,

General Research Corp., CR-1-333, April 1974.




The approach used in the analysis was to model for each pulse entry
point those components judged most susceptible to damage. Equivalent im-
pedances were substituted in place of other components. To analytically
determine the response of the circuitry to signals injected at the points
of entry, computer-aided circuit modeling was performed using the NET-2
network analysis program.l NET-2 was chosen because of its flexibility
and modeling accuracy in simulating circuit devices, and its ability to
perform nonlinear transient radiation analysis. The program was used to
simulate operation of those portions of the sensor amplifier circuit which
were judged to be most susceptible to damage from large transient signals
injected at each of the indicated points. Pulse injection simulation was
accomplished by analytically connecting a pulsed current source to one of
the injection points at a time, determining its effect on the circuit
separate from effects due to injection at the other input points.

Models used for the components themselves included both linear and
nonlinear features. Device models contained in the NET-2 programming,
such as diodes and transistors, were used when possible. For integrated
circuit components, terminal characteristics were modeled by using basic
circuit devices such as resistors and dependent voltage sources. The
characteristics for the components were derived from manufacturers' data.
In general, the radiation characteristics for each of the integrated cir-
cuits were not known. Hence, general characteristics for each class of
device were utilized. For this reason, the results given for the combined
effects of EMP and a TREE environment (i.e., the simulated IEMP environ-
ment) are meant to indicate only the approximate characteristics the ac-
tual circuit might exhibit.

2 TEMP-CIRCUITRY INTERFACE

The circuit under investigation is the HOST single-channel ampli-
fier. The HDL-supplied circuit diagram for the amplifier is shown in
Fig. 1 (chart follows page 8). 1In the HOST system the focal plane elec-
tronics, preamplifier (drawing number 40362-516) and bias power supply
(drawing number 40360-516) are located in the telescope, while the cir-
cumvention circuit (drawing number 40353-516), threshold detector circuit
(drawing number 40368-516), and logarithmic amplifier (drawing number
40350-506) are located in the inner gimbal region. The amplifier circuit
is composed of both discrete and integrated circuit components. The semi-
conductor components (those most likely to suffer damage in an IEMP envi-
ronment) are listed in Table 1 along with a brief description of their
location and circuit function.

1A. F. Malmberg, NET-2 Network Analysis Program - User's Manual, Harry

Diamond Laboratories, September 1972.




The amplifier circuit is composed of five major subcircuits: the
preamplifier (which includes the focal plane electronics), bias power
supply, circumvention circuit; threshold detector circuit, and logarith-
mic amplifier. These subcircuits are shown in Figs. 2 through 6 respec-
tively and have been redrawn from Fig. 1 for clarity and to include
additional annotation. Circled numbers in the figures refer to circuit
points in Fig. 1.

Interconnecting cables judged susceptible to IEMP pickup are used
between the focal plane electronics and the preamplifier and bias power
supply, between the telescope and inner gimbal subcircuits, and at the
logarithmic amplifier output. Examination of these cable connection
points has led to a determination by GRC and HDL personnel of IEMP entry
points into the circuit. The results of this analysis, then, are only
applicable to IEMP pickup at these points. For reference and for identi-
fication purposes in the circuit diagrams, a number is assigned to each
of these induced pulse entry points, which are defined as follows:

(1) Lead connecting the MOSFET source terminal to the
preamplifier input (Fig. 2).

(2) Lead connecting the sensor to the bias power supply
(Figs. 2 and 3).

(3) Lead from the bias control switch to the bias power
supply (Fig. 3).

(4 Lead connecting the preamplifier output stage to the
negative input point of the circumvention ci;cuit
(Figs. 2 and 4).

(5) Lead connecting the preamplifier/sensor feedback path
to the positive input point of the circumvention circuit
(Figs. 2 and 4).

(6) HOST sensor circuit output terminal, which connects to

the logarithmic amplifier output and to the threshold
detector circuit. (Figs. 5 and 6).

3 CIRCUIT ANALYSIS

To find the critical pulse magnitudes for each pulse entry point,
an analysis was performed to determine the circuit response to an injec-
ted square current pulse of l-lsec duration. This pulse shape permits
the application of the HDL device damage-level experimental results

which indicate the vulnerability of each individual circuit component to a

—
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l-usec current pulse.l These experimental results are shown in Table 2,
and are used in this study as device damage criteria (referred to as the
critical pulse level). The double entries shown in the table indicate
first the peak value reached, and second the steady-state value. For
each pulse injection point, the critical pulse level is reached when

the current at any of the susceptible device terminals reaches or ex-
ceeds the current shown in Table 2 for the terminal of the specific
component.

3.1  COMPONENT MODELING

Modeling of the circuit devices was accomplished by utilizing the
NET-2 supplied device models when possible or by creating models from
the basic circuit elements available in NET-2 (resistors, capacitors,
dependent voltage sources, etc.). The NET-2 supplied device models are
linear; most of them have provision for the inclusion of radiation
effects. The NET-2 models utilized in the analysis included those for
the junction diode, zener diode, junction field-effect transistor (JFET)
and metal oxide semiconductor field-effect transistor (MOSFET). 1In gene-
ral, the models for these devices are based on dependent current sources
in conjunction with resistors and capacitors to model the active and
saturation operating regions, but not the breakdown region. The junction
diode model is of the Ebers-Moll type and exhibits normal forward con-
duction, reverse cutoff behavior and storage time effects. The model
does not include junction breakdown at large reverse voltage or conduc-
tivity modulation of the base region. The zener diode model included
the same features as the junction diode model and also included zener
breakdown behavior. The MOSFET model exhibits the very high gate input
impedance normally found, may represent either PNP or NPN structure,
and may be operated in both the enhancement and depletion modes.
Symmetric characteristics with respect to drain-source voltage polarity
is obtained with the model. The JFET model may represent either PNP or
NPN structure and asymmetric characteristics are available with respect
to drain-source voltage polarity. 1In each of the models, current sources
to model radiation effects are included automatically whenever a neutron
or gamma radiation source is specified. (In this analysis only gamma
radiation effects are considered.) Breakdown characteristics for the
FET models were added externally by using zener diode models incorporating
appropriate breakdown voltage and bulk resistance parameters derived
from the manufacturers specifications.

Most of the amplifier circuit operation depends upon the use of
integrated circuit (IC) operational amplifiers. The model used to

1W. L. Vault and L. Harper, Advanced Electro-Optical System Hardening

Study; Phase I-EMP/IEMP Susceptibility of HOST Sensor Electronic

Components, Final Report for Period 1 July 1973 - 31 July 1974, to be
published.
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simulate operational amplifiers was of the type described by Nicholsl
for characterizing an amplifier's unit step response and included the
radiation response and the nonlinear effect of output voltage limiting.
This model had the advantage of being simple while still adequately
modeling the linear operating region and allowing nonlinear effects to
be easily incorporated. For instance, one nonlinear effect included in
the model was voltage limiting which occurred when the input stage satu-
rated. For worst case modeling of this effect, the output voltage level
of the model reached and remained at the power supply voltage level.

In general, however, the nonlinear characteristics for the specific de-
vices used in the circuit (both preceding and during failure) were not
known. Therefore, the approach (particularly for IC's) was to model
possible current paths within the devices during failure and assign
breakdown voltages and resistances for these current paths on the basis
of information available from manufacturers' data sheets. These current
paths for the operational amplifiers were between input terminals, input
and output terminals, or between either input or output terminals and
ground. The IC power supply was assumed to represent a low resistance
path to ground for the pulse length used. The paths were modeled using
zener diodes, while the actual paths depend on the particular circuit
location of each device. The general rule applied was to assign a
breakdown voltage equal to twice the manufacturer's absolute maximum
rating for the terminals in question. The resistance for the current
paths, chosen by analyzing each particular IC's eauivalent circuit,

was determined by assigning a constant value of 5 () to each forward-
biased junction (as determined by the current pulse polarity) encountered
along the path, and by assigning a value of 15 Q to each back-biased
junction. This method was used for each operational amplifier modeled.
The reasoning behind this approach was that in the absence of actual
failure characteristics, adequate modeling of the behavior of each
device should be accomplished in a way which was as simple and as gener-
al as possible.

Modeling of other integrated circuit components in general involved
modification of the operational amplifier model. The DGl43 differential
input driver was represented using the operational amplifier model as
the input stage which controlled the gate terminals of two NET-2 JFET
models acting as switches. The SN54L00 digital TTL gate and the LM1ll
voltage comparator were represented by modifying the operational ampli-
fier model to account for their digital output characteristics. Other
operational amplifier model features, such as output voltage limiting
and zener diodes to model the current paths during failure, were re-
tained. Since the approach for modeling the circuit operation (described
in Sec. 3.2) involved modeling in detail only those components most
susceptible to damage, models were not developed for IC devices such as
the DM8800 gate driver and the SN54L122 monostable multivibrator.

lJ. S. Nichols et al., "Characterization and Modeling of the 709 Integrated

Circuit Operational Amplifier in an Ionizing Radiation Environment," IEEE
Trans. on Nuclear Science, NS-16, No. 6, December 1969.
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3.2 CIRCUIT MODELING

For each pulse injection point an analysis was made to determine
the components most likely to suffer damage. In addition, it was deter-
mined whether, as a result of being perturbed by the injected pulse, any
given device could supply enough energy to the next device to damage it.
In most cases, only those components closest to the pulse injection point
were judged susceptible to damage. This judgment was based on the follow-
ing predictions: (1) most of the pulse energy would be dissipated along
the lowest resistance path to ground, (2) this path normally would in-
volve only one component, (3) none of the components could be driven
hard enough to produce large secondary pulses capable of damaging other
components, and (4) devices such as discrete resistors and capacitors
would be immune to damage. The third prediction is based mainly on the
limitation imposed by each component's power supply (i.e., limited power
available and they provide a low resistance path to ground). Based on
these predictions the circuit amalysis for each injection point included
detailed modeling of only those components judged susceptible to damage.
Other components in the circuit were replaced by equivalent impedances
which included appropriate radiation effects characteristics. For the
inclusion of radiation effects in the computer simulations, a gamma dot
source of 1010 rad (Si)/sec was used. In addition the effects of gamma
radiation are implicitly included in the approach used. For the analysis
of any particular injection point, the magnitude of the injected current
pulse is increased until a critical pulse level is reached as determined
from the experimental data of Table 2. Hence, the values specified in
Table 2 control to a certain extent the radiation response characteris-
tics near failure of each of the components.

Figure 7 illustrates the circuit modeling performed for injection
point one. Detailed component models were used for only the G118 MOSFET
and the HA2605(Al) and (A2) operational amplifiers. The HA2605(A3) oper-
ational amplifier, bias power supply subcircuit, and the circumvention
subcircuit were replaced by equivalent impedances. For the bias power
supply and circumvention subcircuits, these equivalent impedances con-
sisted of single resistors. The HA2605(A3) operational amplifier was
represented with a zener diode (orientation of the diode depended on
the injected pulse polarity) for its input stage and by a 40-Q resistor
for its output resistance. The primary photocurrent generator contained
in the zener diode model was used for simulating radiation effects.

4 RESULTS
The results for pulse entry point number one (Fig. 7) are shown in

Table 3. By virtue of the nonlinearities of the components at the injec-
ted pulse levels used, the time signatures at their terminals mnearly
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_ always reached and maintained a constant value for most of the pulse
duration. The results given for point one, and each of the other injec-
tion points, are the voltage and current values at the pulse midpoint,
or at 0.5 usec. The components judged susceptible to damage were the
G118 MOSFET and the two HA2605 operational amplifiers, Al and A2. Entry
point one is the lead connecting the MOSFET source terminal to the Al
operational amplifier input. The A2 operational amplifier was also mod-
eled so as to include the effects of the feedback loop from the output
of A2 to the MOSFET gate. TFor the IEMP simulated test, the Al operational
amplifier is predicted to be the most vulnerable device. The critical
injected pulse levels are 234 V, 5.5 A for a positive and -140 V, 3.8 A
for a negative pulse. The predicted current path causing failure is
from the positive differential input terminal to ground through a power
supply terminal, TFor the combined effects case where a gamma radiation
environment [1010 rad (Si)/sec] is included, both the G118 MOSFET and the
Al operational amplifier reach their failure levels as listed in Table 2.
The critical injected pulse levels are 285 V, 10 A for a positive pulse
and -255 V, 8.2 A for a negative pulse. The failure criteria (Table 2)
for the HA2605 is for the terminal pair 0ut—In+, where the pulse polari-
ties were reversed to account for the predicted current pulse being in .
the opposite direction to the test condition. In general, for this and
other components, failure was assumed if the signal at a component's
terminal was within 10% or less of the corresponding value specified in
Table 2. The failure criteria applied for the G118 was for the terminal
pair G4-D as listed in Table 2. This data is available for positive
pulses and IEMP effects only, but was applied to each simulation case
due to the absence of other data. The main current path predicted to
cause MOSFET failure is from the source terminal to the gate terminal,
then through the gate protection diode to the substrate. The other
failure criteria listed in Table 1 account for the fact that the G118

is manufactured with 6 gate terminals, 6 source terminals and 1 drain
terminal. Since this analysis was for a l-~channel amplifier, however,
only 1 gate and 1 source terminal were modeled. Nonetheless, the simu-
lation results indicate that the gate voltage never reaches the failure
level for the G1-G2 tests, and hence the G118 was predicted to not fail
by this mode.

The analysis for pulse entry point two (Figs. 2 and 3) indicated
that the DG143 was the only device susceptible to damage. Entry point
two is the lead connected directly to the DG143 output terminals which
are the drain connections for the two N-channel JFETs acting as switches
within the device. One switch is normally open and one is normally
closed. The failure data in Table 2 were obtained for the normally
closed JFET switch. The results shown in Table 4 indicate failure occurs
for an injected pulse of 225 V, 3.4 A for a positive pulse and -300 V,

4 A for a negative pulse. The current path in each case is from the
JFET drain to source then through a biasing resistor (60 Q in the worst
case) to ground. Because failure data were lacking, and analysis includ-
ing radiation effects was not performed.
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TABLE 4
RESULTS FOR PULSE ENTRY POINT 2

POINT 2 SUSCEPTIBLE DEVICE TERMINALS
(V, &)
Simulated : Injected
Test Polarity Pulse (V, A) DG143
a . b
EP + (255, 3.4) Drain (255, 3.4)

Source (200, 3.4)

EP - (~300, &) Drain (300, 4)°
Source (240, 4)

a - EMP Simulated Environment
b -~ Location of Device Failure

TABLE 5
RESULTS FOR PULSE ENTRY POINT 3

POINT 3 SUSCEPTIBLE DEVICE TERMINALS
Simulated Injected (V, A)
Test Polarity Pulse (V, A) DG143
£p® + (61., .064) ' (61., .032)"

m_ (3., .001)

EP - (=73, .39) ' (-73., .35)°
| ' In” (1.6, .001)

a - EMP Simulated Environment
b - Location of Deviece Failure
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At pulse entry point number three (Fig. 3) the only device suscepti-
ble to damage is the DGl43 differential input driver. Entry point three
is the lead connected directly to the input terminal of the DG143. Table
5 gives the simulation results. In each case listed, the current pulse
path causing damage is from the positive differential input terminal to
the negative power supply terminal Vgg. The induced pulse predicted to
cause damage is 61 V, 64 mAfor a positive-biased pulse and -73 V, 0.39 A
for a negative pulse. The damage criteria for the actively biased case
were applied. A simulation including radiation effects was not performed
for this injection point because of the lack of device radiation charac-
teristics and failure criteria. On the basis of the results found for
other injection points, however, an injected current pulse up to twice
as large as for the IEMP-only case might be required to cause damage for
the combined effects case.

The components deemed susceptible to damage due to pulse injection
at entry point four were the two HA2605 operational amplifiers:labeled A2
and A3 in Fig. 2 and the LM10l operational amplifier located nearest
the pulse injection point as shown in Fig. 4. Table 6 indicates that
failure in each case occurs at the output terminal of the HA2605(A3)
operational amplifier. The main current path predicted to cause damage
is from the output terminal to ground via a power supply terminal. The
failure criteria applied from Table 2 are current values for the Oout-Int
terminal pair. For the combined effects case, a current pulse 1.7 to 2
times larger than for the IEMP environment only is required to cause
damage.

The same components judged vulnerable for pulse entry point four
were also used for the analysis of pulse entry point five, which is a
lead connecting the preamplifier and the circumvention circuit. The
results given in Table 7 indicate that the output terminal of the HA2605
(A2) operational amplifier is most vulnerable to damage. The main
current path causing damage is from the output terminal to the power
supply terminal of the IC device. The damage criteria applied were
those given for Out-Int terminal pair. The results also indicate that
again the device is up to twice as resistant to damage during the pres-
ence of gamma radiation.

Pulse entry point six is the sensor amplifier output terminal. Com-
ponents vulnerable to an injected pulse at this point are the LM10l
operational amplifier which acts as the final output stage of the loga-
rithmic amplifier subcircuit of Fig. 6, and the two LM111l voltage
comparators configured as Schmitt triggers in the threshold detector
subcircuit, Fig. 5. To simplify the simulation only one LMlll was
modeled. Current injection simulation results for point six are given
in Table 8. The LM101l output terminal was found to be most susceptible
to damage in each case. The current path causing damage was from the
output terminal to ground through the device power supply terminal.

The damage criteria applied were for the Out-Int terminal pair. Since
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no damage criteria were availabe for the LM111, criteria for similar
device types (i.e., LM10l and LM108) were used. The results indicate
that the presence of a gamma environment had little effect on the

damage vulnerability for this injection point. The output of the LM11l
does not reach the damage level indicated for the SN54L00 TTL gate.
However, information regarding the nonlinear operation of a TTL gate
obtained from HDL during the performance of this contract indicates

that the higher than normal output voltage of the LM11l during the pulse
injection will probably cause the SN54L00 to change logic states.

In summary: the results indicate that the circuit is most vulnera-
ble to a pulse induced at entry point three, the lead between the bias
power supply and the bias control switch (see Fig. 3). For this point
the vulnerable component is the DG143 differential input driver composing
part of the bias power supply circuitry. The critical induced pulse
level found for the IEMP environment for the circuit was 61 V, 0.064 A
for a positive-biased pulse, and -73 V, 0.39 A for a negative-biased
pulse. With the inclusion of radiation effects, the critical pulse
level required for circuit failure is estimated to be a factor of 2
larger. The next most vulnerable circuit locations were for pulses
injected at entry points one, four, and five. These points were all
found to have approximately equal vulnerability, with damage occurring
for 3-A pulses. The vulnerable component in each case was one of the
HA2605 operational amplifiers (depending on the particular pulse entry
point) located in the preamplifier subcircuit.
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